kawasaki z1000 a6f valve timing

You search Auto repair manual PDF kawasaki z1000 a6f valve timing, if there are search results will appear below. If search results do not exist, please search by others keyword.



  kawasaki z1000 a6f valve timing Direct Download speed 5282 Kb/s

  kawasaki z1000 a6f valve timing Full Version speed 6162 Kb/s



TVS – 811 Series Trap Valve Station Installation, Operation and Maintenance Instructions

0

Filed Under (TVS) by admin on 29-04-2012

download
In a piston valve, the control of stem and seat leakage is obtained by tightness of the valve sealing rings to the body and valve plug. The bonnet compresses the valve sealing rings against the body and the valve plug. Flexible disc springs automatically assure a tight seal by exerting pressure on the valve sealing rings, keeping them compressed. Opening and Closing the TVS Isolation Valves The isolation valve begins to stop flow when the valve plug enters the lower valve sealing ring. When the isolation valve is completely closed, the valve plug is in contact with the full height of the valve sealing rings, ensuring the best possible seal. In fact, there is no advantage to be gained in torqueing the valve closed. Armstrong recommends that after closing the isolation valves completely, the handwheel should be turned back one half turn. This makes it easy to re-open the valve by avoiding metal to metal seizure. Troubleshooting – Isolation Valves A piston valve will retain its leak tightness for several years without maintenance. In severe service, such as rapid heating and cooling, some field maintenance may be required. Depending on the problem, these simple steps may help: ! ! ! ! ! Isolation Valve leaks, when the valve is closed . First, Check to make sure the valve is actually closed . Check to see if bonnet is seated on the body, if not, tighten the bonnet nuts until the bonnet seats. This recompresses the valve sealing rings against the body and the valve plug. If valve continues to leak, replace the isolation valve assembly

Incoming search terms:

CYLINDER HEAD REPAIR MANUAL

0

Filed Under (Tips and Review) by admin on 28-10-2010

download
ADJUSTABLE CYLINDER HEAD STAND Head can be rotated 360 degrees. Stays in any position using a simple locking mechanism. Use on twin or four cylinder heads. Shipping weight: 14 lbs. Adjustable length-10-1/2″ to 20-1/2″ long x 14″ width x 10-3/4″ high. 35-8602 Cylinder Head Stand VALVE GUIDE DRIVERS Use for removal and installation of valve guides into cylinder head. Available in the following sizes: 35-8418 4.5mm YM-4116 35-8416 6mm YM-4064-A 35-8417 5mm YM-4097 35-8414 7mm YM-1225-A 35-8408 5.5mm YM-1122 35-8413 8mm YM-1200 VALVE GUIDE DRIVER SET (REMOVE & REPLACE) Designed for speed and accuracy, this eleven piece set provides the right tool for the job. Driver set includes two valve guide drivers (5.5mm and 6.6mm), four valve guide installers, one cutter, three cutter pilots (5.5mm, 6.6mm, and 7.7mm) and one tap handle extension bar. 35-9445 Valve Guide Driver Set YAMAHA VALVE GUIDE INSTALLERS These installers are used for installation of Yamaha shoulder less valve guides to a specific depth into the cylinder head. To use, position onto the valve guide and drive into the cylinder head until installer makes contact with cylinder head surface. Note: Must use with Valve Guide Driver. Available in the following sizes: 35-8439 4.5mm YM-4117 35-8437 5.0mm YM-4098 35-8419 5.5mm YM-4015 35-8435 6mm YM-4065-A 35-8423 7mm YM-4017 VALVE GUIDE REAMERS Reaming valve guides after installation assures a proper valve stem to valve guide fit. Available in the following sizes: 35-3829 4.5mm YM-4118 35-3851 7mm YM-1227 35-3836 5.5mm YM-1196 35-3852 8mm YM-1211 35-3847 6mm YM-4066 CLOVER VALVE LAPPING COMPOUND KIT The world famous green can with the four leaf clover. For seating valves, mating gears, and sharpening. Sold as a kit with coarse 120 grit (roughing) and 280 fine grit (finishing). 35-0309 Clover Valve Lapping Compound VALVE LAPPING TOOL The ultimate vacuum stick for insuring perfect surfaces on valves and valve seats. Interchangeable cups make unit suitable for use with virtually any size valve. Set includes vacuum stick, 3/4″ and 1/4″ diameter rubber cups. 35-8998 Valve Lapping Too

Incoming search terms:

1998 YAMAHA YZF-R6 SERVICE MANUAL

0

Filed Under (Yamaha) by admin on 25-11-2010

download
Camshafts Drive system Camshaft cap inside diameter Camshaft journal diameter Camshaft-journal-to-camshaftcap clearance Intake camshaft lobe dimensions Measurement A Measurement B Measurement C Exhaust camshaft lobe dimensions Measurement A Measurement B Measurement C Max. camshaft runout Chain drive (right) 23.000 23.021 mm 22.967 22.980 mm 0.020 0.054 mm 33.05 33.15 mm 25.14 25.24 mm 7.81 8.01 mm 32.55 32.65 mm 25.07 25.17 mm 7.38 7.58 mm 0.08 mm 33.0 mm 25.09 mm 32.50 mm 25.02 mm 0.06 mm
2-5 ENGINE SPECIFICATIONS SPEC Head Diameter Face Width Seat Width Margin Thickness Item Standard Limit Timing chain Model/number of links Tensioning system RH2015/120 Automatic Valves, valve seats, valve guides Valve clearance (cold) Intake Exhaust Valve dimensions 0.11 0.20 mm 0.21 0.30 mm Valve head diameter A Intake Exhaust Valve face width B Intake Exhaust Valve seat width C Intake Exhaust Valve margin thickness D Intake Exhaust Valve stem diameter Intake Exhaust Valve guide inside diameter Intake Exhaust Valve-stem-to-valve-guide clearance Intake Exhaust Valve stem runout Valve seat width Intake Exhaust 24.9 25.1 mm 21.9 22.1 mm 1.14 1.98 mm 1.14 1.98 mm 0.9 1.1 mm 0.9 1.1 mm 0.6 0.8 mm 0.6 0.8 mm 3.975 3.990 mm 3.960 3.975 mm 4.000 4.012 mm 4.000 4.012 mm 0.010 0.037 mm 0.025 0.052 mm 0.9 1.1 mm 0.9 1.1 mm 1.6 mm 1.6 mm 0.5 mm 0.5 mm 3.950 mm 3.935 mm 4.042 mm 4.042 mm 0.08 mm 0.1 mm 0.04 mm 1.6 mm 1.6 mm
2-6 ENGINE SPECIFICATIONS SPEC Item Standard Limit Valve springs Free length Intake (inner) (outer) Exhaust Installed length (valve closed) Intake (inner) (outer) Exhaust Compressed spring force (installed) Intake (inner) (outer) Exhaust Spring tilt Intake (inner) (outer) Exhaust Winding direction (top view) Intake Exhaust 37.0 mm 38.4 mm 41.7 mm 30.0 mm 32.5 mm 36.1 mm 69 79 N (7.0 8.0 kgf) 114 132 N (11.6 13.4 kgf) 160 184 N (16.3 18.7 kgf) Clockwise Clockwise 35 mm 36.5 mm 39.5 mm 2.5/1.6 mm 2.5/1.7 mm 2.5/1.8 mm Cylinders Cylinder arrangement Bore stroke Compression ratio Bore Max. taper Max. out-of-round Forward-inclined, parallel 4-cylinder 65.5 45.5 mm 12.4 : 1 65.50 65.51 mm 0.05 mm 0.05 mm

Incoming search terms:

Daytona 675 Motorcycle Race Kit Installation Manual

0

Filed Under (Triumph) by admin on 29-10-2010

download
Remove the existing cylinder head gasket in line with the procedures detailed in the Daytona 675 service manual. 2. Fit the chosen race kit cylinder head gasket following the procedures detailed in the Daytona 675 service manual. Caution The use of the following race kit cylinder head gaskets will require changes to the fuelling settings. To alter fuelling settings a third party programmable control unit will be required. Item Description Qty 1 Head gasket (t = 0.65mm) 1 1 Head gasket (t = 0.60mm) 1 1 * Page 7 of 29 © Triumph Designs Ltd 2007. Cams, Valve Spring & Sprocket Kits Parts Supplied Camshaft Inlet Kit – A9618055 Camshaft Exhaust Kit – A9618056 Valve Spring Kit – A9618058 Camshaft Sprocket Kit – A9618057 Warning The race kit must be fitted as a complete set. If it is not fitted as a complete set a failure may result which could cause loss of motorcycle control and an accident. Caution The use of the Camshaft, Valve spring & Sprocket race kits detailed below will require changes to the fuelling settings. To alter fuelling settings a third party programmable control unit will be required. 5 5 4 1 3 2 4 3 Item Description Qty 1 Cam assy, inlet, race 1 Item Description Qty 2 Cam assy, exhaust, race 1 Item Description Qty 3 Valve spring, 14.4id, race12 Item Description Qty 4 Sprocket, camshaft, 34T 2 5 Socket head cap screw, Encapsulated, M6x10 4
Page 8 of 29 © Triumph Designs Ltd 2007. NOTE •The standard inlet cam is 9.25mm max lift and 258.50o duration. The race kit inlet cam is 9.25mm max lift and 268.74o duration. •The standard exhaust cam is 8.5mm max lift and 246o duration. The race kit exhaust cam is 8.5mm max lift and 262.21o duration. •The race kit valve spring must be used in conjunction with the standard spring platforms and retainers. The fitted length of the race springs is the same as the standard spring. 1. The race kit valve springs should be assembled in the same manner as the standard valve springs. Follow the procedure detailed in section 3 of the Daytona 675 service manual. Ensure the springs are installed with the close wound, colour coded end of the springs facing downwards, towards the piston. 2. The race kit camshafts should be assembled in the same manner as the standard camshafts. Follow the procedure detailed in section 3 of the Daytona 675 service manual. 3. The race kit cam sprockets should be mounted and secured to the camshafts using the slotted holes in the sprocket. The slotted holes allow adjustment of the valve timing. The circular holes in the sprockets are for Triumph service tool T3880102 and should not be used to mount the sprockets to the camshafts. NOTE •No timing marks are included on the race sprockets. Race engines will typically have different depths skimmed off the cylinder head and, therefore require specific individual timing. 4. The camshafts should be timed using cam degreeing equipment which typically consists of a degree wheel, pointer, dial indicator and piston stop. Optimum cam timing will depend on the exact specification of the engine, but a recommended starting point is 104o IMOP (Inlet Maximum Opening Point) and 104o EMOP (Exhaust Maximum Opening Point). 5. Always check the inlet and exhaust piston to valve clearance for the timing selected to use, before running the engine. You must ensure both clearances are adequate. As a guide, the standard nominal piston to valve clearance is 1.3mm inlet & 1.5mm exhaust

Incoming search terms:

Kawasaki Ninja 650R (ER-6F) & ER-6N Resource Upgrading the Suspension on the Kawasaki ER6-F/ N

0

Filed Under (Kawasaki) by admin on 30-11-2010

download
Top fork is as removed. Kawasaki Ninja 650R (ER-6F) & ER-6N Resource Before removing the fork from the clamps on the yokes I loosened the fork top. Before removing the fork top the fork-slider was placed in a vice and the bottom bolt loosened….. … before finally being removed with the fork upside down. Because the springs were still in situ this gave sufficient tension on the damper-rod to prevent it from turning and allow the bolt to be removed. When I turned the fork the right-way up to remove the fork-top I did it over a container to catch the oil. Kawasaki Ninja 650R (ER-6F) & ER-6N Resource All the OE components that will no longer be required. Left to right. Fork-top, spacer tube, washer, spring, damper-rod. Bottom bolts get re-used. Old and new, laid-out for comparison. The damper unit, minus spring and fork-top, drops inside the stanchion and slider. Kawasaki Ninja 650R (ER-6F) & ER-6N Resource Then the bolt goes back in, as tight as possible, to secure it. Top fork is done, second one awaits. Note the spring seat on the right, just below the spring. This drops over the damping rod after the oil has been added. The small locking-nut screws over the threaded part of the damping-rod next, all the way to the bottom. Spring drops in and then the fork-top screws on to the damping-rod as well, all the way down to the lock-nut which is used to secure it. At this point the stanchion is extended to the fork-top which is screwed in. Job done.

Incoming search terms:

2003 SUZUKI SV 650 FUEL SYSTEM AND THROTTLE BODY SERVICE MANUAL

0

Filed Under (Suzuki) by admin on 26-02-2011

download
FUEL PUMP The electric fuel pump is mounted at the bottom of the fuel tank, which consists of the armature, magnet, impeller, brush, check valve and relief valve . The ECM controls its ON/OFF operation as controlled under the FUEL PUMP CONTROL SYSTEM . When electrical energy is supplied to the fuel pump, the motor in the pump runs and together with the impel- ler . This causes a pressure difference to occur on both sides of the impeller as there are many grooves around it . Then the fuel is drawn through the inlet port, and with its pressure increased, it is discharged through the outlet port . The fuel pump has a check valve to keep some pressure in the fuel feed hose even when the fuel pump is stopped . Also, the relief valve is equipped in the fuel pump, which releases pressurized fuel to the fuel tank when the outlet of the fuel pressure has increased up to 450 -600 kPa (4.5- 6.0 kgf/cm2,64- 85 psi) . Relief valve Brush , ∎ I,’ Check valve Magnet L Armature When the impeller is driven by the motor, pressure differential occurs between the front part and the rear part of the blade groove as viewed in angular direction due to fluid friction . This process continuously takes place causing fuel pressure to be built up . The pressurized fuel is then let out from the pump chamber and discharged through the motor section and the check valve . FUEL SYSTEM AND THROTTLE BODY 5- 3 Inlet port I I Impeller 5-4 FUEL SYSTEM AND THROTTLE BODY FUEL PRESSURE REGULATOR The fuel pressure regulator consists of the spring and valve . It keeps absolute fuel pressure of 300 kPa (3.0 kgf/cm2,43 psi) to be applied to the injector at all times . When the fuel pressure rises more than 300 kPa (3 .0 kgf/cm2, 43 psi), the fuel pushes the valve in the regulator open and excess fuel returns to the fuel tank . 90 Spring 02 Valve FUEL INJECTOR The fuel injector consists of the solenoid coil, plunger, needle valve and filter . It is an electromagnetic type injection nozzle which injects fuel in the throttle body according to the signal from the ECM. When the solenoid coil of the injector is energized by the ECM, it becomes an electromagnet and attracts the plunger. At the same time, the needle valve incorporated with the plunger opens and the injector which is under the fuel pressure injects fuel in conic dispersion . As the lift stroke of the needle valve of the injector is set constant, the volume of the fuel injected at one time is determined by the length of time during which the solenoid coil is energized (injection time)

Incoming search terms:

Honda CG125 Owners Workshop Manual

0

Filed Under (Honda) by admin on 25-11-2010

download
Clean the air filter Pull off the right-hand side panel and remove the two nuts which secure the air filter cover. Withdraw the cover, checking that the sealing gasket is in good condition, pull out the retaining spring and withdraw the element assembly. Peel off the inner and outer foam sleeves. Wash all components in white spirit (Stoddard solvent) or in warm water and detergent and dry them thoroughly. Soak the foam sleeves in the specified oil, then squeeze them gently (do not wring them out or they will be damaged) to expel all surplus oil. Refit the sleeves to the element frame. On reassembly ensure that all components are correctly fitted so that unfiltered air cannot bypass the element. 2 Check the spark plug Remove the spark plug cap, unscrew the plug and check its condition, comparing it with the photographs on page 65. If it is badly worn or fouled it must be renewed. If it is fit for further service check the gap and reset it if necessary, as described in Chapter 3.8. 3 Check the valve clearances It is important that the correct valve clearance is maintained. A small amount of free play is designed into the valve train to allow for expansion of the various components. If the setting deviates greatly from that specified, a marked drop in performance will be evident. In the case of the clearance becoming too great, it will be found that valve operation will be noisy, and performance will drop off as a result of the valves not opening fully. If on the other hand, the clearance is too small the valves may not close completely. This will not only cause loss of compression, but will also cause the valves to burn out very quickly. In extreme cases, a valve head may strike the piston crown, causing extensive damage to the engine. The clearances should be checked and adjusted with a cold engine. Place the machine on its centre stand and remove the rocker cover, taking care not to damage the 0 ring. Remove the gearchange pedal and the left-hand outer cover to expose the generator rotor. Remove plug and allow old oil to drain Remove the spark plug, then slowly rotate the engine anticlockwise by way of the generator rotor, watching the inlet valve. When it has opened and closed again (sunk down and risen up to its original position), rotate the engine further until the T mark on the rotor periphery aligns exactly with the raised index mark which is positioned between 12 and 1 o’clock (from the crankshaft) on the generator stator. The engine will then be in the correct position for checking the valve clearances, namely at Top Dead Centre (TDC) on the compression stroke; check that there is free play at both rockers. Using a 0.08 mm (0.003 in) feeler gauge, check the clearance between the top of each valve stem and its corresponding rocker. The feeler gauge must be a light sliding fit, with the rocker and valve stem just nipping it. If necessary, slacken the locknut, and turn the small square-headed adjuster to obtain the correct setting. Tighten the locknut, holding the adjuster at the same time to prevent it from moving. Finally, recheck the setting and then repeat the procedure on the other rocker. 4 Check the contact breaker points and ignition timing Note: since the generator stator plate is located by its countersunk retaining screws, the ignition timing can only be altered by opening or closing the contact breaker gap; therefore both operations are described as one. The full procedure is given here for ease of reference, but if the points are found to be in good condition and if the gap has not altered or is within the tolerance, then the ignition timing will be sufficiently accurate and there will be no need to carry out the full check. First remove the gearchange pedal, the left-hand outer cover, the spark plug and the left-hand side panel

Kawasaki Exhausts – ZX-6 ZX-10 Zx-14 Exhaust – Slip-ons INSTALLATION MANUAL

0

Filed Under (Kawasaki) by admin on 25-10-2010

download
Our favorite exhaust options for Kawasaki ZX Ninjas – ZX-10,ZX-6r, and the new horsepower king, Zx-14.. Grab your horsepower today. We love Rob Muzzy and Muzzy Exhausts.Going back to Doug Chandler and Scott Russell, Muzzy has been synonomous with Kawasaki and performance – and for years, if you rode Kawasaki,and you were on the podium, Muzzy was on your exhaust. We also feature Arrow and Yoshimura exhausts for your ZX-6R, ZX-10 and ZX-14. We love the sound of a Yosh exhaust on any Kawasaki Ninja. Yoshimura Oval (RS-3) Race Slip-On for Kawasaki ZX14R 2006 The easiest and least expensive way to experience Yoshimura performance is with our Slip-On/Bolt-On lines. Bolt-On style bolts to the O. E. M. mid-pipe Slip-On style with its stainless steel easily attaches to the mid-pipe RS-1 is available where noted Usually, no jetting or re-programming is required and installation is a snap Hindle Stainless Exhaust High Head Pipes – Kawasaki ZX6R-RR 03-04 The worlds lightest stainless steel exhaust system. Increase horsepower and torque throughout the entire rpm range. Lightweight, strong stainless steel header design looks great and weighs less than stock headers. Available in low- and high-mo North Denver News http://northdenvernews.com Powered by Joomla! Generated: 19 October, 2010, 12:28 Hindle Stainless Exhaust Low Head Pipes – Kawasaki ZX9R 00-03 The worlds lightest stainless steel exhaust system. Increase horsepower and torque throughout the entire rpm range. Lightweight, strong stainless steel header design looks great and weighs less than stock headers. Available in low- and high-mo

Incoming search terms:

Lilac LS-18 Motorcycle Maintenance Standards

0

Filed Under (Lilac) by admin on 25-11-2010

download
CYLINDER AND CYLINDER HEAD MAINTENANCE ITEM STANDARD REPAIR LIMIT METHOD REMARKS Cylinder Bore 54 -0.01 54.1 Boring After boring honing should be performed Ovality 0.01 0.05 Boring After boring honing should be performed Taper 0.01 0.05 Boring After boring honing should be performed Oversize 0.25 steps 55 max. Do R and L cylinders at same time / 4 steps Valve Seat Width 0.8 – 1.0 1.3 Adjust Use a cutter Angle 45∞ Combustion Chamber Volume 18.2cc -0.5cc Remove carbon if heavy accumulation Compression Ratio 7.8:1 Head Gasket Thickness 1.0 Cylinder Head Nut Torque 3.0 kg/m (22 ft.-lb.) Out standard Adjust 8mm nut Intake and Exhaust Ports Port Wall SurfaceMust be smooth Remove carbon Intake and Exh. Valve GuidesOD 12 +0.09 +0.1 ID 7 +0.01 -0.0 7.06 Exchange Intake Valve Stem Diameter 7 -0.02 -0.03 6.9 Exchange Head Thickness 1 0.7 Exchange Exhaust Valve Stem Diameter 7 -0.02 -0.03 6.9 Exchange Head Thickness 1 0.7 Exchange Intake and Exhaust Valve Seat Face Width Range 0.8~1.0 1.3 Use valve seat cutter Intake Valve Guide Clearance 0.02~0.04 0.08 Replace valve or guide Exhaust Valve Guide Clearance 0.06~0.08 0.12 Replace valve or guide Valve Spring (Large) Installed Load 10.2 kg 8.7 kg Replace Fitted length 31.5 Free Length 36.5 34.7 Replace Tilt 1.5/100 3/100 Replace Valve Spring (Small) Installed Load 5.48 kg 4.65 kg Replace Fitted length 29.5 Page 4 of 10 Free Length 33.5 31.8 Replace Tilt 1.5/100 3/100 Replace Rocker Arm ID 12 +0.00 +0.02112.07 Replace Rocker Shaft OD 12 -0.06 -0.024 11.92 Replace Arm and Shaft Clearance 0.045~0.006 0.10 Replace arm or shaft Tappet Clearance 0.05 Out standard Adjust Measure cold at TDC Rocker Arm Ball Surface 1.8îR -0.006 -0.024 Replace if severe wear Pushrod Bend 0.1 0.5 Straighten Over 100mm (2) CRANKSHAFT, PISTON AND CONROD MAINTENANCE ITEM STANDARD REPAIR LIMIT METHOD REMARKS Piston OD @ Top 53.65 -0.02 Max Diameter 53.95 -0.015 53.85 Replace Ovality 0.1 Piston and Cylinder Clearance 0.04~0.05 0.15 Replace Piston Ring Groove Clearance 0.03~0.07 0.10 Replace Piston Oversize Step 0.25 4 steps Top Ring and 2nd Ring Thickness 2 -0.01 -0.03 1.92 Replace Width 2.5 -0.01 0.55kg Tension 0.85 – 1.15kg 1 Replace End Gap 0.15 – 0.35 Replace Oil Ring Thickness 3.2 -0.01 -0.03 3.12 Replace Width 2.5 -0.1 Tension 1.0~1.3kg 0.65kg Replace End Gap 0.15~0.35 1 Replace Ring Gap Position 120∞ 3 equal spacesOut standard Adjust Avoid Piston Pin Axis Ring Oversizes 0.25 steps 4 steps Piston Pin OD 15 -0.0 +0.006 14.95 Replace Pin Hole in Piston ID 15 +0.012 -0.015.05 Replace Pin and Piston Clearance -0.006 ~ +0.012 0.06 Replace Hand push fit piston at 100∞C Conrod Small End Bush ID 15+0.027+0.016 15.07 Replace bush Conrod and Piston Pin Clearance 0.01~0.027 0.07 Replace Crankpin OD 24.94 +0.0+0.0124.90 Replace Crankpin Roller OD 5 (+0.001+0.003) Refer to conrod ID Replace 3Sizes; 52 per assembly for selective fit 5 (+0.0 -0.002) 5 (-0.003 -0.005) Conrod ID 34.95+0.03+0.02435.02 Axial Play 0.2~0.4 0.5 Adjust Radial Play 0.026~0.036 0.06 Replace

Incoming search terms:

KAWASAKI ZX1400 A6F/ B6F SPECIFICATIONS

0

Filed Under (Kawasaki) by admin on 05-11-2010

download
the all new 1352 cm3 engine is the most powerful production engine that Kawasaki has ever built. ! The engine is designed to deliver the perfect balance of power, torque and driveability. ! The torque delivery is very linear, so there is no powerband, as such, but riders will notice an extra push once the rev counter passes 6,000 r/min. ! The sheer amount of torque available makes pulling away in almost any gear possible (at 2,000 r/min the engine produces over 98 N. m of torque) . ! The layout of the engine was carefully designed to maintain a compact engine. The engine width is approximately the same as the ZX-12R. ! Gear driven secondary balancers virtually eliminate vibration for a smooth vibration free engine and aid rider comfort. FUEL SYSTEM ! Idle speed control system contributes to easy starting and ensures the catalysers reach their optimum operating temperature quickly. ! The fuel reservoir is located at the rear of the tank and extends below the seat, contributing to the centralised mass. TRANSMISSION ! Hydraulically operated clutch with a radial mounted clutch master cylinder for smooth clutch operation. CHASSIS ! The next generation aluminium monocoque frame is an advance on Kawasakiís unique ZX-12R frame. The aluminium box section runs over the engine minimising the width of the bike. Lightweight and very stiff, this sophisticated frame gives the bike both responsive handling qualities and incredible stability. ! Already more rigid than a twin spar design, with the engine solidly mounted the monocoqueís torsional rigidity is further increased. Using the engine as a stressed member allows the engineers to make the frame lighter. The air box and battery are housed inside the frame contributing to the compact layout. ! Our engineers made full use of the design freedom given to them by the engineís compact size. The engineís forward position in the frame, the wheelbase and front/rear wheel weight balance were all carefully chosen to achieve both high speed stability and lightweight, responsive handling. The wheelbase is shorter than the ZZR1200 but longer than the ZX-12R. SUSPENSION ! Inverted 43 mm front cartridge forks and Uni-Trak linkage rear suspension complement the highly rigid frame, offering both controllability at speed and superb road holding when sport riding. BRAKE SYSTEM ! Petal disc brakes, radial mounted front calipers and a radial mount front brake master cylinder ensure excellent stopping power and feel.

Incoming search terms: